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Since torque in hannonic drives is transmitted by a pure couple, hannonic drives
do not generate radial forces and therefore can be instrumented with torque
sensors without interference from radialforces. The installation of torque sensors
on the stationary component of harmonic drives (the Flexipline cup in this
research work) produce backdrivability needed for robotic and telerobotic com-
pliant maneuvers [3, 4, 6]. Backdrivability of a harmonic drive, when used as
torque increaser, means that the output shaft can be rotated via finite amount
of torque. A high ratio hannonic drive is non-backdrivable because its output
shaft cannot be turned by applying a torque on it. This article first develops the
dynamic behavior of a hannonic drive. in particular the non-backdrivability, in
terms of a sensitivity transfer function. The instrumentation of the harmonic drive
with torque sensor is then described. This leads to a description of the control
architecture which allows modulation of the sensitivity transfer function within
the limits established by the closed-loop stability. A set of experiments on an
active hand controller, powered by a DC motor coupled to an instrumented
harmonic drive, is given to exhibit this method's limitations.
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1 Introduction
Developed over 30 years ago primarily for aerospace ap-

plications, hannonic drives are compact transmission sys-
tems which increase the torque of electric motors. With
increase use of robotics, back-drivable hannonic drives can
be employed in robotic compliant maneuvers. Hannonic
drives consist of three simple parts and thus offer prac-
titioners the freedom to incorporate drive components into
machines or equipment. This article flfSt gives a summary
of the hannonic drive's principle of operation. Section 3
discusses the dynamic behavior of the hannonic drive where
it is shown that large reduction ratios (usually more than
60) result in non-backdrivable systems [4]. This leads to a
discussion of the sensors required to make the hannonic
drive arbitrarily backdrivable. Section 4 develops the control

Hannonic drives have three elements [2]: 1) Elliptical
Wave Generator, 2) Aexipline (or Cup), and 3) Rigid Circu-
lar Spline (Fig. 1). The Elliptical Wave Generator is an
elliptical bearing attached to the motor drive shaft. The
Aexipline is a nonrigid cup whose inner surface grasps the
Wave Generator at the cup's open end. The Aexipline's
edge conforms to the Wave Generator's elliptical shape as
the Generator rotates. The Aexipline's outer surface has
teeth which contact the internal teeth of the Rigid Circular
Spline, a rigid ring. The Aexipline has two fewer teeth than
the Rigid Circular Spline. Thus, one revolution of the Wave
Generator will cause relative motion between the Rigid Cir-
cular Spline and the Aexipline.

Suppose nf is the number of teeth on the Aexiplin~~ _and
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Fig. 2 The circular rigid spline and the flexipline. The flexipline is
held stationary and the rigid circular spline rotates with a speed of 92'
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Fig. 3 The dynamic behavior of the harmonic drive maneuvering a
mass with moment of inertia of JElliptical Wave

Generator

Fig. 1 Harmonic drive components. When the flexipline is kept sta-
tionary, the elliptical wave generator and the rigid circular spline rotate
at the same direction.

Fig. 4 The general representation of the dynamic behavior of the
harmonic drive when rigid circular spline interacts with the environ-
ment E

Circular Spline is considered to be the output and rotates
such that the reduction ratio, r, is determined by:

r=l--.!!L.
nf- nr

(2)

The ratio in this case is positive and the Rigid Circular
Spline and Wave Generator rotate at the same direction. If
nf= 400, and n, = 402, then Eq. (2) results in r = 201. The
analysis on this paper is for the latter case where the Flexip-
line is stationary and Rigid Circular Spline rotates the load.!
The holes in the Rigid Circular Spline fasten to the load.

3 Dynamic Behavior
This section describes the dJ'llamic behavior of the har-

monic drive. At this point no assumptions are made about
the type of control employed for the motor that drives the
Wave Generator. The Wave Generator is coupled directly
to the motor shaft while the Flexipline is held stationary
and the Rigid Circular Spline is employed to maneuver a
load. U(s), the voltage command to the motor amplifier, is
the input. 91 (s), the motor position (or the Wave Generator
position), is the output. The transfer function G(s) represents
the motor dynamics.

91(s) = G(s) U(s) (3)

No assumptions on the structure or order of G2 are made
at this point. All dynamic characteristics associated with
the DC motor including the friction torque is implicitely
incorporated in G(s). Suppose the Rigid Circular Spline is

employed to drive a load whose inertia is J. Inspection of
Figure 2 results in the following equation for the dynamic
behavior of the assembled Flexipline and the Rigid Circular

Spline:

W-T=J62 (4)

W is the torque that holds the Flexipline stationary. T is all
possible external torques that oppose the motion of the Rigid
Circular Spline (and its load).

Assuming 61 = ,02' the block diagram of Fig. 3 depicts
one possible combination of Eqs. (3) and (4) which can
represent the dynamic behavior of the harmonic drive when
maneuvering a load with inertia of J. Inspection of the block-
diagram of Fig. 3 shows that the torque that holds the flexip-
line, W, results from two independent variables: 1) the input
voltage command to the amplifier input, 2) all torques that
oppose the motion of the load. The block diagram of Fig.
3 also depicts the non~backdrivability of the system where
T does not affect 92; it only adds to W.

If the Rigid Circular Spline and load with inertia J were
in contact with an environment with stiffness and damping
of K and C, the block diagram of Figure 3 should be modified
as given Fig. 4 where E(s) = Js2 + C s + K. Note that E can
be any arbitrary dynamics representing the dynamics of the
Rigid Circular Spline and its interacting environment. In
particular, we are interested in powered hand controllers for
telerobotic applications where a human is in contact with a
stick driven by a Rigid Circular Spline. (Section 6 will give
a more detailed description about the hand controller.) K,

lThis is the most commonly used configuration in robotics. The derivations in
this article can be extended to other configurations also.

~e Laplace argument of various variables, s. are given only when the variables
are introduced for the first time.
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Fig. 5 Four strain gages on the flexipline support measures (I)

S is defined as the system sensitivity transfer function (1/
impedance). Designers can shape the sensitivity transfer
function via selection of a proper H via any standard linear
controller design method. For brevity, the selection of the
compensator, H is not discussed here; reference [1] gives
the best description of such control methods.

Here we discuss a few properties of closed loop system.
Inspection of Eq. (5), (6), and (7) reveals that when H is
small, T does not affect 62, the output motion, because S
approaches zero. The system is therefore non-backdrivable.
When H becomes very large (i.e., approaches infinity) over
a finite frequency range, then P approaches zero and 62 from
Eq. (5) will be a function of T only:

1
62=--T (8)

E

If the system is carrying inertia J2 only, then E = Js2 and
equation 8 results in:

62 = -~T (9)
Js

Equation (9) resembles the Newton's law for the inertia J,
under the torque of T. This means that for large values of
H, the system will become totally backdrivable and responds
to external torques, T, as if there was no harmonic drive in
the system. (The system will not respond to R either since
P will be very small for large values of H. One must choose
a H such that the system responds both to R and T arbitrarily.)
One cannot choose an arbitrarily large value for H; the
closed-loop stability of the system shown in Fig. 6 must be

guaranteed.

Fig. 6 The torque keeping the flexipline stationary is usett'as a feed-
back to make the system backdrivable
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C, and J in the case of a hand controller represent the
dynamic behavior of the human hand and the stick as seen
from the Rigid Circular Spline. See reference [5] for an
example in measurement of E for the human arm.

5 Stability and Performance
The selection of H to shape the sensitivity function is not

discussed here. Regardless of the type of the design method,
it is important to notice the limitations that have evolved
from the block diagram of Fig. 6:

1) If the system carries a mass only, then E = Js2. The
term J; in the loop gain of Fig. 6 implies two zeros at the
origin. (If G has an integrator, the pole/zero cancellation at
the origin results in one zero for the loop gain.) The zeros
at the origin do not let one choose a large value for H. This
is true because term Js2 results in a nonminimum phase loop
transfer function with zeros at the center. Some control
techniques may result in large values for H which drive the
closed-loop poles to the open loop zeros located at the origin
of the complex plane. In other words, a totally backdrivale
system by choosing a large H (as described by Eq. (8»
cannot be achieved.

2) Another concern about the system arises when this
harmonic drive is used to control the torque, W, in a torque
control system [7]. Inspection of block diagram of Fig. 6
results in the following equation for the measured torque, W:

EG
W= R (10)

r+EGH

It can be observed that at DC (steady state), since E = 0, W
will be zero in response to a constant input, R. Therefore,
regardless of the torque measuring technique, the steady-
state measurement of the torque sensor in response to con-

4 Instrumentation and Control
Our primary purpose is to develop an instrumentation

which allows a designer to modify arbitrarily the behavior
of the harmonic drive so it responds to the external torques
T and becomes backdrivable. We suggest that W, the torque
that holds the Flexipline stationary, be measured by installing
four strain gages on either the Flexipline or the structure that
holds the Flexipline [8]. Since the Flexipline is stationary, the
measurement of W is rather straightforward. This torque,
after modification by a controller, is then used to drive the
motor in the direction of T. Measuring joint torque on a
rotating shaft in robotic systems has always been difficult
for engineers. This design allows measurement of joint tor-
ques from a stationary part, the Flexipline cup.

Figure 6 shows ti!e control architecture where the mea-
sured torque W is used to drive the motor after compensation
by H(s), and R(s) is the input command. Inspection of Fig.
6 results in the following equation for 62.

62 = P(s)R -S(s)T (5)

where the transfer function P and S are given as:

G

r
(6)p= GHE

1+-
r
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S= GHE

~

(7)
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stant inputs will be zero. This indicates that closed-loop
torque control cannot be accomplished at DC. One might
think of using an integrator for the controller H, to cancel
the zero in the E. An integrator in the controller indicates
an infinite value for input at DC. In practice this cannot be
done since the actuator will saturate and the loop gain is
still zero.

Note that the reason we are interested in the case of E =
J2? is due to the fact that we believe the system of motor-
harmonic drive must remain stable in its simplest form of
functioning: carrying a mass with inertia of J2. This inertia
is at least equal to the inertia of the Rigid Circular Spline.
The more elaborate case is when the link connected to Rigid
Circular Spline interacts with an environment.
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Fig. 9 The position of the hand controller
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6 Experiments
A set of experiments was carried out on an active one-

degree-of-freedom hand controller (Fig. 7).3 Hand control-
lers are powered joysticks that can be used by pilots. Hand
controllers can also be used as master robots in telerobotic
systems when rate-control governs the dynamics of the mas-
ter robot. Another application for hand controllers can be
found in maneuvering unmanned underwater vehicles where
the operator maneuvers the vehicle from a mother ship using
a hand controller. Traditionally, the speed of the underwater
vehicle in various directions is a function of the position of
the hand controller in various directions. The hand control-
ler's range of motion usually is small: on the order of two-
inch translational motion and ::!: 100 rotational motion.

A closed-loop positioning controller was designed for the
motor such that the widest bandwidth is achieved for G while
the motor remains robust in the presence of its unmodeled
dynamics. G is given by Eq. (12) resulting in approximate
bandwidth of 2 rad! s.

125892.5
--(12)

fad
8(8'" + 1408 + 4900) + 125892.5 fad

G=

3The hardware for construction of this hand controller was donated by CIMCORP
located in Shoreview, Minnesota. The author appreciates this generosity.
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The inertia seen by the Rigid Circular Spline is J2 = 1.1534
slug.ft2 and r = 201. It is desired that the system exhibits a
sensitivity of 1 degree/lbf-ft (or 0.01745 rad/lbf-ft) for-."id-
est possible bandwidth. In other words for every one Ibf-ft
exerted by a pilot, the stick should move 1 degree. This
resembles the dynamic behavior of a spring. A set of experi-
ments were carried out to demonstrate that the ratio of the
stick motion, 92, over the imposed torque, T, is in fact 1
degree/lbf-ft. Figure 8 shows the torque that the pilot im-
posed on the stick. The pilot flTSt pulls about 4 Ibf-ft and
then pushes about 4 Ibf-ft. Figure 9 represents the stick
motion. Inspection of Figs. 8 and 9 shows that steady state
torque of :t41bf-ft results in :t4 degree motion in the stick.

In another set of experiments, the pilot maneuvers the
stick with a higher frequencies; Fig. 10 shows the torque
imposed by the pilot on the stick. Fig. 11 shows the stick
motion. It can be observed that the ratio of the stick position
over the pilot torque for the flTSt five seconds of the experi-
ment is about 1 degree/lbf-ft while this ratio has been attenu-
ated for the second five seconds of the experiment. This
experiment shows that the target dynamics has been achieved
only within the bandwidth of G only.
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This article describes how a hamlonic drive can be instru-
mented with force sensor to develop backdrivability. We
have framed the hamlonic drive backdrivability via a sensi-
tivity transfer function. The sensitivity transfer function is
defined as the transfer function that maps the external torques
to the hamlonic drive output position. It is shown that one
cannot shape arbitrarily the system sensitivity function of
a DC motor-hamlonic drive. The more backdrivability is
required, the smaller the stability range will be. It is also
shown that closed loop torque control system cannot be
achieved at DC.
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